IPB

Здравствуйте, гость ( Вход | Регистрация )

 
Ответить в данную темуНачать новую тему
Physical and Chemical Engineering Sciences, Prentice Hall International Series in the Physical and Chemical Engine
lavteam522
сообщение 20.05.2018 - 15:17
Сообщение #1


Завсегдатай
Иконка группы

Группа: Пользователи
Пользователь №: 162214
Сообщений: 304
Регистрация: 28.07.2013
Загружено: байт
Скачано: байт
Коэффициент: ---
Спасибо сказали: 338 раз(а)



Прикрепленный файл  0134181026.jpg ( 159.79 килобайт ) Кол-во скачиваний: 23


Transport Processes and Separation Process Principles (5th Edition)


Series: Prentice Hall International Series in the Physical and Chemical Engineering Sciences
Hardcover: 1248 pages
Publisher: Prentice Hall; 5 edition (May 3, 2018)
Language: English
ISBN-10: 0134181026
ISBN-13: 978-0134181028

» Click to show Spoiler - click again to hide... «
Table of Contents
Preface to the Fifth Edition xxvii

About the Authors xxxi

Part 1: Transport Processes: Momentum, Heat, and Mass

Chapter 1: Introduction to Engineering Principles and Units 3

1.0 Chapter Objectives 3

1.1 Classification of Transport Processes and Separation Processes (Unit Operations) 3

1.2 SI System of Basic Units Used in This Text and Other Systems 6

1.3 Methods of Expressing Temperatures and Compositions 8

1.4 Gas Laws and Vapor Pressure 10

1.5 Conservation of Mass and Material Balances 13

1.6 Energy and Heat Units 17

1.7 Conservation of Energy and Heat Balances 23

1.8 Numerical Methods for Integration 28

1.9 Chapter Summary 29

Chapter 2: Introduction to Fluids and Fluid Statics 36

2.0 Chapter Objectives 36

2.1 Introduction 36

2.2 Fluid Statics 37

2.3 Chapter Summary 47

Chapter 3: Fluid Properties and Fluid Flows 50

3.0 Chapter Objectives 50

3.1 Viscosity of Fluids 50

3.2 Types of Fluid Flow and Reynolds Number 54

3.3 Chapter Summary 58

Chapter 4: Overall Mass, Energy, and Momentum Balances 61

4.0 Chapter Objectives 61

4.1 Overall Mass Balance and Continuity Equation 62

4.2 Overall Energy Balance 68

4.3 Overall Momentum Balance 81

4.4 Shell Momentum Balance and Velocity Profile in Laminar Flow 90

4.5 Chapter Summary 96

Chapter 5: Incompressible and Compressible Flows in Pipes 105

5.0 Chapter Objectives 105

5.1 Design Equations for Laminar and Turbulent Flow in Pipes 106

5.2 Compressible Flow of Gases 125

5.3 Measuring the Flow of Fluids 129

5.4 Chapter Summary 138

Chapter 6: Flows in Packed and Fluidized Beds 145

6.0 Chapter Objectives 145

6.1 Flow Past Immersed Objects 146

6.2 Flow in Packed Beds 150

6.3 Flow in Fluidized Beds 156

6.4 Chapter Summary 161

Chapter 7: Pumps, Compressors, and Agitation Equipment 166

7.0 Chapter Objectives 166

7.1 Pumps and Gas-Moving Equipment 166

7.2 Agitation, Mixing of Fluids, and Power Requirements 176

7.3 Chapter Summary 192

Chapter 8: Differential Equations of Fluid Flow 196

8.0 Chapter Objectives 196

8.1 Differential Equations of Continuity 196

8.2 Differential Equations of Momentum Transfer or Motion 202

8.3 Use of Differential Equations of Continuity and Motion 207

8.4 Chapter Summary 216

Chapter 9: Non-Newtonian Fluids 220

9.0 Chapter Objectives 220

9.1 Non-Newtonian Fluids 221

9.2 Friction Losses for Non-Newtonian Fluids 226

9.3 Velocity Profiles for Non-Newtonian Fluids 229

9.4 Determination of Flow Properties of Non-Newtonian Fluids Using a Rotational Viscometer 232

9.5 Power Requirements in Agitation and Mixing of Non-Newtonian Fluids 234

9.6 Chapter Summary 235

Chapter 10: Potential Flow and Creeping Flow 239

10.0 Chapter Objectives 239

10.1 Other Methods for Solution of Differential Equations of Motion 239

10.2 Stream Function 240

10.3 Differential Equations of Motion for Ideal Fluids (Inviscid Flow) 241

10.4 Potential Flow and Velocity Potential 241

10.5 Differential Equations of Motion for Creeping Flow 246

10.6 Chapter Summary 247

Chapter 11: Boundary-Layer and Turbulent Flow 250

11.0 Chapter Objectives 250

11.1 Boundary-Layer Flow 251

11.2 Turbulent Flow 254

11.3 Turbulent Boundary-Layer Analysis 260

11.4 Chapter Summary 263

Chapter 12: Introduction to Heat Transfer 265

12.0 Chapter Objectives 265

12.1 Energy and Heat Units 265

12.2 Conservation of Energy and Heat Balances 271

12.3 Conduction and Thermal Conductivity 277

12.4 Convection 282

12.5 Radiation 284

12.6 Heat Transfer with Multiple Mechanisms/Materials 287

12.7 Chapter Summary 292

Chapter 13: Steady-State Conduction 299

13.0 Chapter Objectives 299

13.1 Conduction Heat Transfer 299

13.2 Conduction Through Solids in Series or Parallel with Convection 305

13.3 Conduction with Internal Heat Generation 313

13.4 Steady-State Conduction in Two Dimensions Using Shape Factors 315

13.5 Numerical Methods for Steady-State Conduction in Two Dimensions 318

13.6 Chapter Summary 326

Chapter 14: Principles of Unsteady-State Heat Transfer 332

14.0 Chapter Objectives 332

14.1 Derivation of the Basic Equation 332

14.2 Simplified Case for Systems with Negligible Internal Resistance 334

14.3 Unsteady-State Heat Conduction in Various Geometries 337

14.4 Numerical Finite-Difference Methods for Unsteady-State Conduction 355

14.5 Chilling and Freezing of Food and Biological Materials 366

14.6 Differential Equation of Energy Change 372

14.7 Chapter Summary 376

Chapter 15: Introduction to Convection 385

15.0 Chapter Objectives 385

15.1 Introduction and Dimensional Analysis in Heat Transfer 385

15.2 Boundary-Layer Flow and Turbulence in Heat Transfer 389

15.3 Forced Convection Heat Transfer Inside Pipes 394

15.4 Heat Transfer Outside Various Geometries in Forced Convection 402

15.5 Natural Convection Heat Transfer 408

15.6 Boiling and Condensation 415

15.7 Heat Transfer of Non-Newtonian Fluids 424

15.8 Special Heat-Transfer Coefficients 427

15.9 Chapter Summary 436

Chapter 16: Heat Exchangers 444

16.0 Chapter Objectives 444

16.1 Types of Exchangers 444

16.2 Log-Mean-Temperature-Difference Correction Factors 447

16.3 Heat-Exchanger Effectiveness 450

16.4 Fouling Factors and Typical Overall U Values 453

16.5 Double-Pipe Heat Exchanger 454

16.6 Chapter Summary 458

Chapter 17: Introduction to Radiation Heat Transfer 461

17.0 Chapter Objectives 461

17.1 Introduction to Radiation Heat-Transfer Concepts 461

17.2 Basic and Advanced Radiation Heat-Transfer Principles 465

17.3 Chapter Summary 482

Chapter 18: Introduction to Mass Transfer 487

18.0 Chapter Objectives 487

18.1 Introduction to Mass Transfer and Diffusion 487

18.2 Diffusion Coefficient 493

18.3 Convective Mass Transfer 508

18.4 Molecular Diffusion Plus Convection and Chemical Reaction 508

18.5 Chapter Summary 512

Chapter 19: Steady-State Mass Transfer 519

19.0 Chapter Objectives 519

19.1 Molecular Diffusion in Gases 519

19.2 Molecular Diffusion in Liquids 528

19.3 Molecular Diffusion in Solids 531

19.4 Diffusion of Gases in Porous Solids and Capillaries 537

19.5 Diffusion in Biological Gels 544

19.6 Special Cases of the General Diffusion Equation at Steady State 546

19.7 Numerical Methods for Steady-State Molecular Diffusion in Two Dimensions 550

19.8 Chapter Summary 557

Chapter 20: Unsteady-State Mass Transfer 568

20.0 Chapter Objectives 568

20.1 Unsteady-State Diffusion 568

20.2 Unsteady-State Diffusion and Reaction in a Semi-Infinite Medium 575

20.3 Numerical Methods for Unsteady-State Molecular Diffusion 577

20.4 Chapter Summary 582

Chapter 21: Convective Mass Transfer 586

21.0 Chapter Objectives 586

21.1 Convective Mass Transfer 586

21.2 Dimensional Analysis in Mass Transfer 594

21.3 Mass-Transfer Coefficients for Various Geometries 595

21.4 Mass Transfer to Suspensions of Small Particles 610

21.5 Models for Mass-Transfer Coefficients 613

21.6 Chapter Summary 617

Part 2: Separation Process Principles

Chapter 22: Absorption and Stripping 627

22.0 Chapter Objectives 627

22.1 Equilibrium and Mass Transfer Between Phases 627

22.2 Introduction to Absorption 645

22.3 Pressure Drop and Flooding in Packed Towers 649

22.4 Design of Plate Absorption Towers 654

22.5 Design of Packed Towers for Absorption 656

22.6 Efficiency of Random-Packed and Structured Packed Towers 672

22.7 Absorption of Concentrated Mixtures in Packed Towers 675

22.8 Estimation of Mass-Transfer Coefficients for Packed Towers 679

22.9 Heat Effects and Temperature Variations in Absorption 682

22.10 Chapter Summary 685

Chapter 23: Humidification Processes 694

23.0 Chapter Objectives 694

23.1 Vapor Pressure of Water and Humidity 694

23.2 Introduction and Types of Equipment for Humidification 703

23.3 Theory and Calculations for Cooling-Water Towers 704

23.4 Chapter Summary 712

Chapter 24: Filtration and Membrane Separation Processes (Liquid–Liquid or Solid–Liquid Phase) 716

24.0 Chapter Objectives 716

24.1 Introduction to Dead-End Filtration 716

24.2 Basic Theory of Filtration 722

24.3 Membrane Separations 732

24.4 Microfiltration Membrane Processes 733

24.5 Ultrafiltration Membrane Processes 734

24.6 Reverse-Osmosis Membrane Processes 738

24.7 Dialysis 747

24.8 Chapter Summary 751

Chapter 25: Gaseous Membrane Systems 759

25.0 Chapter Objectives 759

25.1 Gas Permeation 759

25.2 Complete-Mixing Model for Gas Separation by Membranes 765

25.3 Complete-Mixing Model for Multicomponent Mixtures 770

25.4 Cross-Flow Model for Gas Separation by Membranes 773

25.5 Derivation of Equations for Countercurrent and Cocurrent Flow for Gas Separation by Membranes 779

25.6 Derivation of Finite-Difference Numerical Method for Asymmetric Membranes 787

25.7 Chapter Summary 798

Chapter 26: Distillation 805

26.0 Chapter Objectives 805

26.1 Equilibrium Relations Between Phases 805

26.2 Single and Multiple Equilibrium Contact Stages 808

26.3 Simple Distillation Methods 813

26.4 Binary Distillation with Reflux Using the McCabe–Thiele and Lewis Methods 818

26.5 Tray Efficiencies 836

26.6 Flooding Velocity and Diameter of Tray Towers Plus Simple Calculations for Reboiler and Condenser Duties 839

26.7 Fractional Distillation Using the Enthalpy–Concentration Method 841

26.8 Distillation of Multicomponent Mixtures 851

26.9 Chapter Summary 862

Chapter 27: Liquid–Liquid Extraction 874

27.0 Chapter Objectives 874

27.1 Introduction to Liquid–Liquid Extraction 874

27.2 Single-Stage Equilibrium Extraction 878

27.3 Types of Equipment and Design for Liquid–Liquid Extraction 880

27.4 Continuous Multistage Countercurrent Extraction 889

27.5 Chapter Summary 901

Chapter 28: Adsorption and Ion Exchange 907

28.0 Chapter Objectives 907

28.1 Introduction to Adsorption Processes 907

28.2 Batch Adsorption 910

28.3 Design of Fixed-Bed Adsorption Columns 912

28.4 Ion-Exchange Processes 918

28.5 Chapter Summary 924

Chapter 29: Crystallization and Particle Size Reduction 928

29.0 Chapter Objectives 928

29.1 Introduction to Crystallization 928

29.2 Crystallization Theory 935

29.3 Mechanical Size Reduction 942

29.4 Chapter Summary 947

Chapter 30: Settling, Sedimentation, and Centrifugation 952

30.0 Chapter Objectives 952

30.1 Settling and Sedimentation in Particle–Fluid Separation 953

30.2 Centrifugal Separation Processes 966

30.3 Chapter Summary 979

Chapter 31: Leaching 984

31.0 Chapter Objectives 984

31.1 Introduction and Equipment for Liquid–Solid Leaching 984

31.2 Equilibrium Relations and Single-Stage Leaching 990

31.3 Countercurrent Multistage Leaching 994

31.4 Chapter Summary 999

Chapter 32: Evaporation 1002

32.0 Chapter Objectives 1002

32.1 Introduction 1002

32.2 Types of Evaporation Equipment and Operation Methods 1004

32.3 Overall Heat-Transfer Coefficients in Evaporators 1008

32.4 Calculation Methods for Single-Effect Evaporators 1010

32.5 Calculation Methods for Multiple-Effect Evaporators 1016

32.6 Condensers for Evaporators 1026

32.7 Evaporation of Biological Materials 1028

32.8 Evaporation Using Vapor Recompression 1029

32.9 Chapter Summary 1030

Chapter 33: Drying 1035

33.0 Chapter Objectives 1035

33.1 Introduction and Methods of Drying 1035

33.2 Equipment for Drying 1036

33.3 Vapor Pressure of Water and Humidity 1040

33.4 Equilibrium Moisture Content of Materials 1049

33.5 Rate-of-Drying Curves 1052

33.6 Calculation Methods for a Constant-Rate Drying Period 1057

33.7 Calculation Methods for the Falling-Rate Drying Period 1062

33.8 Combined Convection, Radiation, and Conduction Heat Transfer in the Constant-Rate Period 1065

33.9 Drying in the Falling-Rate Period by Diffusion and Capillary Flow 1068

33.10 Equations for Various Types of Dryers 1074

33.11 Freeze-Drying of Biological Materials 1084

33.12 Unsteady-State Thermal Processing and Sterilization of Biological Materials 1088

33.13 Chapter Summary 1096

Part 3: Appendixes

Appendix A.1 Fundamental Constants and Conversion Factors 1107

Appendix A.2 Physical Properties of Water 1113

Appendix A.3 Physical Properties of Inorganic and Organic Compounds 1124

Appendix A.4 Physical Properties of Foods and Biological Materials 1147

Appendix A.5 Properties of Pipes, Tubes, and Screens 1151

Appendix A.6 Lennard-Jones Potentials as Determined from Viscosity Data 1154

Notation 1156

Index 1166


http://seizefile.net/702715

Сообщение отредактировал Williams - 10.07.2019 - 08:48
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
ioncube
сообщение 20.05.2018 - 15:49
Сообщение #2


Активный пользователь
Иконка группы

Группа: Пользователи
Пользователь №: 188190
Сообщений: 855
Регистрация: 11.01.2017
Из: Pakistan
Загружено: байт
Скачано: байт
Коэффициент: ---
Спасибо сказали: 403 раз(а)



File hoster you used is nothing but scam please upload somewhere safe ....
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
lavteam522
сообщение 20.05.2018 - 16:25
Сообщение #3


Завсегдатай
Иконка группы

Группа: Пользователи
Пользователь №: 162214
Сообщений: 304
Регистрация: 28.07.2013
Загружено: байт
Скачано: байт
Коэффициент: ---
Спасибо сказали: 338 раз(а)



plz upload mega

thxxxx
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Ayiep1202
сообщение 21.05.2018 - 13:44
Сообщение #4


Завсегдатай
Иконка группы

Группа: Пользователи
Пользователь №: 178203
Сообщений: 129
Регистрация: 11.06.2015
Загружено: байт
Скачано: байт
Коэффициент: ---
Спасибо сказали: 59 раз(а)



Цитата(lavteam522 @ 20.05.2018 - 15:17) *
Прикрепленный файл  0134181026.jpg ( 159.79 килобайт ) Кол-во скачиваний: 23


Transport Processes and Separation Process Principles (5th Edition)


Please upload this great book to MEGA.. alc.gif
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Ayiep1202
сообщение 23.05.2018 - 00:45
Сообщение #5


Завсегдатай
Иконка группы

Группа: Пользователи
Пользователь №: 178203
Сообщений: 129
Регистрация: 11.06.2015
Загружено: байт
Скачано: байт
Коэффициент: ---
Спасибо сказали: 59 раз(а)



hi guys,

any good news about that book?
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
lavteam522
сообщение 13.07.2018 - 17:48
Сообщение #6


Завсегдатай
Иконка группы

Группа: Пользователи
Пользователь №: 162214
Сообщений: 304
Регистрация: 28.07.2013
Загружено: байт
Скачано: байт
Коэффициент: ---
Спасибо сказали: 338 раз(а)



Analysis, Synthesis, and Design of Chemical Processes, 5th Edition - Richard Turton, Joseph A. Shaeiwitz, Debangsu Bhattacharyya

» Click to show Spoiler - click again to hide... «
Table of Contents

Preface xxv

About the Authors xxix

List of Nomenclature xxxi

Chapter 0: Outcomes Assessment 1

0.1 Student Self-Assessment 2

0.2 Assessment by Faculty 4

0.3 Summary 6

References 6

Section I: Conceptualization and Analysis of Chemical Processes 7

Chapter 1: Diagrams for Understanding Chemical Processes 9

1.1 Block Flow Diagram (BFD) 11

1.2 Process Flow Diagram (PFD) 14

1.3 Piping and Instrumentation Diagram (P&ID) 27

1.4 Additional Diagrams 32

1.5 Three-Dimensional Representation of a Process 34

1.6 The 3-D Plant Model 41

1.7 Operator and 3-D Immersive Training Simulators 43

1.8 Summary 48

References 49

Short Answer Questions 49

Problems 50

Chapter 2: The Structure and Synthesis of Process Flow Diagrams 55

2.1 Hierarchy of Process Design 55

2.2 Step 1—Batch versus Continuous Process 56

2.3 Step 2—The Input/Output Structure of the Process 60

2.4 Step 3—The Recycle Structure of the Process 70

2.5 Step 4—General Structure of the Separation System 83

2.6 Step 5—Heat-Exchanger Network or Process Energy Recovery System 83

2.7 Information Required and Sources 83

2.8 Summary 83

References 85

Short Answer Questions 86

Problems 86

Chapter 3: Batch Processing 91

3.1 Design Calculations for Batch Processes 91

3.2 Gantt Charts and Scheduling 97

3.3 Nonoverlapping Operations, Overlapping Operations, and Cycle Times 98

3.4 Flowshop and Jobshop Plants 101

3.5 Product and Intermediate Storage and Parallel Process Units 106

3.6 Design of Equipment for Multiproduct Batch Processes 111

3.7 Summary 113

References 114

Short Answer Questions 114

Problems 114

Chapter 4: Chemical Product Design 123

4.1 Strategies for Chemical Product Design 124

4.2 Needs 125

4.3 Ideas 127

4.4 Selection 128

4.5 Manufacture 130

4.6 Batch Processing 131

4.7 Economic Considerations 131

4.8 Summary 132

References 132

Chapter 5: Tracing Chemicals through the Process Flow Diagram 135

5.1 Guidelines and Tactics for Tracing Chemicals 135

5.2 Tracing Primary Paths Taken by Chemicals in a Chemical Process 136

5.3 Recycle and Bypass Streams 142

5.4 Tracing Nonreacting Chemicals 145

5.5 Limitations 145

5.6 Written Process Description 146

5.7 Summary 147

Problems 147

Chapter 6: Understanding Process Conditions 149

6.1 Conditions of Special Concern for the Operation of Separation and Reactor Systems 150

6.2 Reasons for Operating at Conditions of Special Concern 152

6.3 Conditions of Special Concern for the Operation of Other Equipment 155

6.4 Analysis of Important Process Conditions 158

6.5 Summary 165

References 165

Short Answer Questions 165

Problems 166

Section II: Engineering Economic Analysis of Chemical Processes 169

Chapter 7: Estimation of Capital Costs 171

7.1 Classifications of Capital Cost Estimates 172

7.2 Estimation of Purchased Equipment Costs 175

7.3 Estimating the Total Capital Cost of a Plant 182

7.4 Estimation of Plant Costs Based on Capacity Information 206

7.5 Summary 208

References 208

Short Answer Questions 209

Problems 210

Chapter 8: Estimation of Manufacturing Costs 213

8.1 Factors Affecting the Cost of Manufacturing a Chemical Product 213

8.2 Cost of Operating Labor 218

8.3 Utility Costs 219

8.4 Raw Material Costs 234

8.5 Yearly Costs and Stream Factors 237

8.6 Estimating Utility Costs from the PFD 238

8.7 Cost of Treating Liquid and Solid Waste Streams 240

8.8 Evaluation of Cost of Manufacture for the Production of Benzene via the Hydrodealkylation of Toluene 241

8.9 Summary 242

References 243

Short Answer Questions 243

Problems 244

Chapter 9: Engineering Economic Analysis 247

9.1 Investments and the Time Value of Money 248

9.2 Different Types of Interest 251

9.3 Time Basis for Compound Interest Calculations 254

9.4 Cash Flow Diagrams 255

9.5 Calculations from Cash Flow Diagrams 259

9.6 Inflation 266

9.7 Depreciation of Capital Investment 268

9.8 Taxation, Cash Flow, and Profit 274

9.9 Summary 277

References 277

Short Answer Questions 278

Problems 278

Chapter 10: Profitability Analysis 285

10.1 A Typical Cash Flow Diagram for a New Project 285

10.2 Profitability Criteria for Project Evaluation 287

10.3 Comparing Several Large Projects: Incremental Economic Analysis 295

10.4 Establishing Acceptable Returns from Investments: The Concept of Risk 298

10.5 Evaluation of Equipment Alternatives 299

10.6 Incremental Analysis for Retrofitting Facilities 305

10.7 Evaluation of Risk in Evaluating Profitability 309

10.8 Profit Margin Analysis 325

10.9 Summary 326

References 327

Short Answer Questions 327

Problems 328

Section III: Synthesis and Optimization of Chemical Processes 343

Chapter 11: Utilizing Experience-Based Principles to Confirm the Suitability of a Process Design 347

11.1 The Role of Experience in the Design Process 348

11.2 Presentation of Tables of Technical Heuristics and Guidelines 351

11.3 Summary 354

List of Informational Tables 354

References 368

Problems 368

Chapter 12: Synthesis of the PFD from the Generic BFD 369

12.1 Information Needs and Sources 370

12.2 Reactor Section 372

12.3 Separator Section 373

12.4 Reactor Feed Preparation and Separator Feed Preparation Sections 388

12.5 Recycle Section 389

12.6 Environmental Control Section 389

12.7 Major Process Control Loops 390

12.8 Flow Summary Table 390

12.9 Major Equipment Summary Table 390

12.10 Summary 391

References 391

General Reference 392

Problems 392

Chapter 13: Synthesis of a Process Using a Simulator and Simulator Troubleshooting 397

13.1 The Structure of a Process Simulator 398

13.2 Information Required to Complete a Process Simulation: Input Data 401

13.3 Handling Recycle Streams 413

13.4 Choosing Thermodynamic Models 415

13.5 Case Study: Toluene Hydrodealkylation Process 426

13.6 Electrolyte Systems Modeling 428

13.7 Solids Modeling 440

Appendix 13.1 445

Appendix 13.2 447

13.8 Summary 450

References 451

Short Answer Questions 454

Problems 455

Chapter 14: Process Optimization 463

14.1 Background Information on Optimization 463

14.2 Strategies 469

14.3 Topological Optimization 473

14.4 Parametric Optimization 479

14.5 Lattice Search, Response Surface, and Mathematical Optimization Techniques 489

14.6 Process Flexibility and the Sensitivity of the Optimum 489

14.7 Optimization in Batch Systems 490

14.8 Summary 497

References 498

Short Answer Questions 498

Problems 498

Chapter 15: Pinch Technology 509

15.1 Introduction 509

15.2 Heat Integration and Network Design 510

15.3 Composite Temperature-Enthalpy Diagram 523

15.4 Composite Enthalpy Curves for Systems without a Pinch 524

15.5 Using the Composite Enthalpy Curve to Estimate Heat-Exchanger Surface Area 525

15.6 Effectiveness Factor (F) and the Number of Shells 529

15.7 Combining Costs to Give the EAOC for the Network 534

15.8 Other Considerations 536

15.9 Heat-Exchanger Network Synthesis Analysis and Design (HENSAD) Program 540

15.10 Mass-Exchange Networks 541

15.11 Summary 550

References 550

Short Answer Questions 551

Problems 552

Chapter 16: Advanced Topics Using Steady-State Simulators 561

16.1 Why the Need for Advanced Topics in Steady-State Simulation? 562

16.2 User-Added Models 562

16.3 Solution Strategy for Steady-State Simulations 571

16.4 Studies with the Steady-State Simulation 589

16.5 Estimation of Physical Property Parameters 601

16.6 Summary 605

References 605

Short Answer Questions 607

Problems 607

Chapter 17: Using Dynamic Simulators in Process Design 617

17.1 Why Is There a Need for Dynamic Simulation? 618

17.2 Setting Up a Dynamic Simulation 619

17.3 Dynamic Simulation Solution Methods 633

17.4 Process Control 639

17.5 Summary 647

References 647

Short Answer Questions 648

Problems 649

Chapter 18: Regulation and Control of Chemical Processes with Applications Using Commercial Software 655

18.1 A Simple Regulation Problem 656

18.2 The Characteristics of Regulating Valves 657

18.3 Regulating Flowrates and Pressures 660

18.4 The Measurement of Process Variables 662

18.5 Common Control Strategies Used in Chemical Processes 663

18.6 Exchanging Heat and Work between Process and Utility Streams 674

18.7 Logic Control 680

18.8 Advanced Process Control 682

18.9 Case Studies 683

18.10 Putting It All Together: The Operator Training Simulator (OTS) 688

18.11 Summary 689

References 690

Problems 690

Section IV: Chemical Equipment Design and Performance Process Equipment Design and Performance 695

Chapter 19: Process Fluid Mechanics 697

19.1 Basic Relationships in Fluid Mechanics 697

19.2 Fluid Flow Equipment 703

19.3 Frictional Pipe Flow 709

19.4 Other Flow Situations 723

19.5 Performance of Fluid Flow Equipment 736

References 755

Short Answer Questions 756

Problems 757

Chapter 20: Process Heat Transfer 771

20.1 Basic Heat-Exchanger Relationships 771

20.2 Heat-Exchange Equipment Design and Characteristics 779

20.3 LMTD Correction Factor for Multiple Shell and Tube Passes 789

20.4 Overall Heat Transfer Coefficients—Resistances in Series 798

20.5 Estimation of Individual Heat Transfer Coefficients and Fouling Resistances 800

20.6 Extended Surfaces 828

20.7 Algorithm and Worked Examples for the Design of Heat Exchangers 837

20.8 Performance Problems 846

References 859

Appendix 20.A Heat-Exchanger Effectiveness Charts 861

Appendix 20.B Derivation of Fin Effectiveness for a Rectangular Fin 864

Short Answer Questions 866

Problems 866

Chapter 21: Separation Equipment 875

21.1 Basic Relationships in Separations 876

21.2 Illustrative Diagrams 883

21.3 Equipment 911

21.4 Extraction Equipment 942

21.5 Gas Permeation Membrane Separations 947

References 951

Short Answer Questions 952

Problems 954

Chapter 22: Reactors 961

22.1 Basic Relationships 962

22.2 Equipment Design for Nonisothermal Conditions 980

22.3 Performance Problems 1003

Chapter 23: Other Equipment 1015

23.1 Pressure Vessels 1016

23.2 Knockout Drums or Simple Phase Separators 1024

23.3 Steam Ejectors 1049

References 1058

Short Answer Questions 1059

Problems 1060

Chapter 24: Process Troubleshooting and Debottlenecking 1065

24.1 Recommended Methodology 1067

24.2 Troubleshooting Individual Units 1071

24.3 Troubleshooting Multiple Units 1076

24.4 A Process Troubleshooting Problem 1081

24.5 Debottlenecking Problems 1085

24.6 Summary 1091

References 1091

Problems 1091

Section V: The Impact of Chemical Engineering Design on Society 1101

Chapter 25: Ethics and Professionalism 1103

25.1 Ethics 1104

25.2 Professional Registration 1121

25.3 Legal Liability [13] 1125

25.4 Business Codes of Conduct [14, 15] 1126

25.5 Summary 1127

References 1128

Problems 1129

Chapter 26: Health, Safety, and the Environment 1131

26.1 Risk Assessment 1131

26.2 Regulations and Agencies 1134

26.3 Fires and Explosions 1143

26.4 Process Hazard Analysis 1145

26.5 Chemical Safety and Hazard Investigation Board 1153

26.6 Inherently Safe Design 1153

26.7 Summary 1154

26.8 Glossary 1154

References 1156

Problems 1157

Chapter 27: Green Engineering 1159

27.1 Environmental Regulations 1159

27.2 Environmental Fate of Chemicals 1160

27.3 Green Chemistry 1163

27.4 Pollution Prevention during Process Design 1164

27.5 Analysis of a PFD for Pollution Performance and Environmental Performance 1166

27.6 An Example of the Economics of Pollution Prevention 1167

27.7 Life Cycle Analysis 1168

27.8 Summary 1169

Section VI: Interpersonal and Communication Skills 1173

Chapter 28: Teamwork 1175

28.1 Groups 1175

28.2 Group Evolution 1184

28.3 Teams and Teamwork 1186

28.4 Misconceptions 1189

28.5 Learning in Teams 1189

28.6 Other Reading 1190

28.7 Summary 1191

References 1192

Problems 1192

Chapter 29: Written and Oral Communication 1195

29.1 Audience Analysis 1196

29.2 Written Communication 1196

29.3 Oral Communication 1209

29.4 Software and Author Responsibility 1215

29.5 Summary 1218

References 1218

Problems 1219

Chapter 30: A Report-Writing Case Study 1221

30.1 The Assignment Memorandum 1221

30.2 Response Memorandum 1222

30.3 Visual Aids 1224

30.4 Example Reports 1230

30.5 Checklist of Common Mistakes and Errors 1244

Appendix A: Cost Equations and Curves for the CAPCOST Program 1247

A.1 Purchased Equipment Costs 1247

A.2 Pressure Factors 1264

A.3 Material Factors and Bare Module Factors 1267

References 1275

Appendix B: Information for the Preliminary Design of Fifteen Chemical Processes 1277

B.1 Dimethyl Ether (DME) Production, Unit 200 1278

B.2 Ethylbenzene Production, Unit 300 1283

B.3 Styrene Production, Unit 400 1291

B.4 Drying Oil Production, Unit 500 1299

B.5 Production of Maleic Anhydride from Benzene, Unit 600 1305

B.6 Ethylene Oxide Production, Unit 700 1311

B.7 Formalin Production, Unit 800 1317

B.8 Batch Production of L-Phenylalanine and L-Aspartic Acid, Unit 900 1323

B.9 Acrylic Acid Production via the Catalytic Partial Oxidation of Propylene [1–5], Unit 1000 1329

B.10 Production of Acetone via the Dehydrogenation of Isopropyl Alcohol (IPA) [1–4], Unit 1100 1338

B.11 Production of Heptenes from Propylene and Butenes [1], Unit 1200 1344

B.12 Design of a Shift Reactor Unit to Convert CO to CO2, Unit 1300 1352

B.13 Design of a Dual-Stage Selexol Unit to Remove CO2 and H2S From

B.14 Design of a Claus Unit for the Conversion of H2S to Elemental Sulfur, Unit 1500 1363

B.15 Modeling a Downward-Flow, Oxygen-Blown, Entrained-Flow Gasifier, Unit 1600 1371

Appendix C: Design Projects 1379

Project 1 Increasing the Production of 3-Chloro-1-Propene (Allyl Chloride) in Unit 600 1381

Project 2 Design and Optimization of a New 20,000-Metric-Tons-per-Year Facility to Produce Allyl Chloride at La Nueva Cantina, Mexico 1394

Project 4 The Design of a New 100,000-Metric-Tons-per-Year Phthalic Anhydride Production Facility 1412

Project 5 Problems at the Cumene Production Facility, Unit 800 1417

Project 6 Design of a New, 100,000-Metric-Tons-per-Year Cumene Production Facility 1430

Index 1433


Приватный текст
Зарегистрироваться
Написать 5 сообщений (5 осталось)


Essentials of Chemical Reaction Engineering, 2nd Edition - H. Scott Fogler

» Click to show Spoiler - click again to hide... «
Table of Contents
Preface xv

About the Author xxxi

Chapter 1: Mole Balances 1

1.1 The Rate of Reaction, –rA 4

1.2 The General Mole Balance Equation 8

1.3 Batch Reactors (BRs) 10

1.4 Continuous-Flow Reactors 12

1.5 Industrial Reactors 23

Chapter 2: Conversiona and Reactor Sizing 33

2.1 Definition of Conversion 34

2.2 Batch Reactor Design Equations 34

2.3 Design Equations for Flow Reactors 37

2.4 Sizing Continuous-Flow Reactors 40

2.5 Reactors in Series 49

2.6 Some Further Definitions 60

Chapter 3: Rate Laws 71

3.1 Basic Definitions 72

3.2 The Rate Law 74

3.3 The Reaction Rate Constant 85

3.4 Molecular Simulations 95

3.5 Present Status of Our Approach to Reactor Sizing and Design 99

Chapter 4: Stoichiometry 111

4.1 Batch Systems 113

4.2 Flow Systems 119

4.3 Reversible Reactions and Equilibrium Conversion 132

Chapter 5: Isothermal Reactor Design: Conversion 147

5.1 Design Structure for Isothermal Reactors 148

5.2 Batch Reactors (BRs) 152

5.3 Continuous-Stirred Tank Reactors (CSTRs) 160

5.4 Tubular Reactors 170

5.5 Pressure Drop in Reactors 177

5.6 Synthesizing the Design of a Chemical Plant 199

Chapter 6: Isothermal Reactor Design: Moles and Molar Flow Rates 217

6.1 The Molar Flow Rate Balance Algorithm 218

6.2 Mole Balances on CSTRs, PFRs, PBRs, and Batch Reactors 218

6.3 Application of the PFR Molar Flow Rate Algorithm to a Microreactor 222

6.4 Membrane Reactors 227

6.5 Unsteady-State Operation of Stirred Reactors 236

6.6 Semibatch Reactors 237

Chapter 7: Collection and Analysis of Rate Data 255

7.1 The Algorithm for Data Analysis 256

7.2 Determining the Reaction Order for Each of Two Reactants Using the Method of Excess 258

7.3 Integral Method 259

7.4 Differential Method of Analysis 263

7.5 Nonlinear Regression 271

7.6 Reaction-Rate Data from Differential Reactors 276

7.7 Experimental Planning 283

Chapter 8: Multiple Reactions 293

8.1 Definitions 294

8.2 Algorithm for Multiple Reactions 297

8.3 Parallel Reactions 300

8.4 Reactions in Series 309

8.5 Complex Reactions 319

8.6 Membrane Reactors to Improve Selectivity in Multiple Reactions 327

8.7 Sorting It All Out 332

8.8 The Fun Part 332

Chapter 9: Reaction Mechanisms, Pathways, Bioreactions, and Bioreactors 349

9.1 Active Intermediates and Nonelementary Rate Laws 350

9.2 Enzymatic Reaction Fundamentals 359

9.3 Inhibition of Enzyme Reactions 372

9.4 Bioreactors and Biosynthesis 380

Chapter 10: Catalysis and Catalytic Reactors 419

10.1 Catalysts 419

10.2 Steps in a Catalytic Reaction 425

10.3 Synthesizing a Rate Law, Mechanism, and Rate-Limiting Step 441

10.4 Heterogeneous Data Analysis for Reactor Design 457

10.5 Reaction Engineering in Microelectronic Fabrication 467

10.6 Model Discrimination 472

10.7 Catalyst Deactivation 475

10.8 Reactors That Can Be Used to Help Offset Catalyst Decay 485

Chapter 11: Nonisothermal Reactor Design–The Steady-State Energy Balance and Adiabatic PFR Applications 515

11.1 Rationale 516

11.2 The Energy Balance 517

11.3 The User-Friendly Energy Balance Equations 525

11.4 Adiabatic Operation 531

11.5 Adiabatic Equilibrium Conversion 541

11.6 Reactor Staging with Interstage Cooling or Heating 546

11.7 Optimum Feed Temperature 550

Chapter 12: Steady-State Nonisothermal Reactor Design—Flow Reactors with Heat Exchange 565

12.1 Steady-State Tubular Reactor with Heat Exchange 566

12.2 Balance on the Heat-Transfer Fluid 569

12.3 Algorithm for PFR/PBR Design with Heat Effects 572

12.4 CSTR with Heat Effects 592

12.5 Multiple Steady States (MSS) 602

12.6 Nonisothermal Multiple Chemical Reactions 609

12.7 Radial and Axial Variations in a Tubular Reactor 624

12.8 Safety 632

Chapter 13: Unsteady-State Nonisothermal Reactor Design 661

13.1 The Unsteady-State Energy Balance 662

13.2 Energy Balance on Batch Reactors (BRs) 664

13.3 Batch and Semibatch Reactors with a Heat Exchanger 679

13.4 Nonisothermal Multiple Reactions 690

Appendix A: Numerical Techniques 715

A.1 Useful Integrals in Reactor Design 715

A.2 Equal-Area Graphical Differentiation 716

A.3 Solutions to Differential Equations 718

A.4 Numerical Evaluation of Integrals 719

A.5 Semilog Graphs 721

A.6 Software Packages 721

Appendix B: Ideal Gas Constant and Conversion Factors 723

Appendix C: Thermodynamic Relationships Involving the Equilibrium Constant 727

Appendix D: Software Packages 733

D.1 Polymath 733

D.2 Wolfram 735

D.3 MATLAB 735

D.4 Excel 736

D.5 COMSOL (http://www.umich.edu/~elements/5e/12chap/comsol.html) 736

D.6 Aspen 737

D.7 Visual Encyclopedia of Equipment—Reactors Section 738

D.8 Reactor Lab 738

Appendix E: Rate-Law Data 739

Appendix F: Nomenclature 741

Appendix G: Open-Ended Problems 745

G.1 Design of Reaction Engineering Experiment 745

G.2 Effective Lubricant Design 745

G.3 Peach Bottom Nuclear Reactor 745

G.4 Underground Wet Oxidation 746

G.5 Hydrodesulfurization Reactor Design 746

G.6 Continuous Bioprocessing 746

G.7 Methanol Synthesis 746

G.8 Cajun Seafood Gumbo 746

G.9 Alcohol Metabolism 747

G.10 Methanol Poisoning 748

Appendix H: Use of Computational Chemistry Software Packages 749

H.1 Computational Chemical Engineering 749

Appendix I: How to Use the CRE Web Resources 751

I.1 CRE Web Resources Components 751

I.2 How the Web Can Help Your Learning Style 754

I.3 Navigation 755

Index 757

Web Chapters (available on companion Web site)

Chapter 14: Mass Transfer Limitations in Reacting Systems

Chapter 15: Diffusion and Reaction

Chapter 16: Residence Time Distributions of Chemical Reactors

Chapter 17: Predicting Conversion Directly from the Residence Time Distribution

Chapter 18: Models for Nonideal Reactors


Приватный текст
Зарегистрироваться
Написать 5 сообщений (5 осталось)


Mass Transfer Processes: Modeling, Computations, and Design - P. A. Ramachandran

» Click to show Spoiler - click again to hide... «
Table of Contents
Preface xxix

About the Author xxxvii

Notation xxxix

Part I: Fundamentals of Mass Transfer Modeling 1

Chapter 1: Introduction to Modeling of Mass Transfer Processes 3

1.1 What Is Mass Transfer? 5

1.2 Preliminaries: Continuum and Concentration 7

1.3 Flux Vector 10

1.4 Concentration Jump at Interface 15

1.5 Application Examples 20

1.6 Basic Methodology of Model Development 28

1.7 Conservation Principle 29

1.8 Differential Models 30

1.9 Macroscopic Scale 32

1.10 Mesoscopic or Cross-Section Averaged Models 37

1.11 Compartmental Models 43

Chapter 2: Examples of Differential (1-D) Balances 51

2.1 Cartesian Coordinates 52

2.2 Cylindrical Coordinates 67

2.3 Spherical Coordinates 73

Chapter 3: Examples of Macroscopic Models 85

3.1 Macroscopic Balance 87

3.2 The Batch Reactor 90

3.3 Reactor–Separator Combination 96

3.4 Sublimation of a Spherical Particle 101

3.5 Dissolved Oxygen Concentration in a Stirred Tank 104

3.6 Continuous Stirred Tank Reactor 106

3.7 Tracer Experiments: Test for Backmixed Assumption 110

3.8 Liquid–Liquid Extraction 112

Chapter 4: Examples of Mesoscopic Models 123

4.1 Solid Dissolution from a Wall 124

4.2 Tubular Flow Reactor 129

4.3 Mass Exchangers 134

Chapter 5: Equations of Mass Transfer 151

5.1 Flux Form 153

5.2 Frame of Reference 156

5.3 Properties of Diffusion Flux 163

5.4 Pseudo-Binary Diffusivity 165

5.5 Concentration Form 166

5.6 Common Boundary Conditions 171

5.7 Macroscopic Models: Single-Phase Systems 172

5.8 Multiphase Systems: Local Volume Averaging 175

Chapter 6: Diffusion-Dominated Processes and the Film Model 185

6.1 Steady State Diffusion: No Reaction 186

6.2 Diffusion-Induced Convection 193

6.3 Film Concept in Mass Transfer Analysis 198

6.4 Surface Reactions: Role of Mass Transfer 206

6.5 Gas–Liquid Interface: Two-Film Model 212

Chapter 7: Phenomena of Diffusion 223

7.1 Diffusion Coeffcients in Gases 224

7.2 Diffusion Coeffcients in Liquids 237

7.3 Non-Ideal Liquids 243

7.4 Solid–Solid Diffusion 246

7.5 Diffusion of Fluids in Porous Solids 248

7.6 Heterogeneous Media 254

7.7 Polymeric Membranes 256

7.8 Other Complex Effects 257

Chapter 8: Transient Diffusion Processes 265

8.1 Transient Diffusion Problems in 1-D 266

8.2 Solution for Slab: Dirichlet Case 267

8.3 Solutions for Slab: Robin Condition 276

8.4 Solution for Cylinders and Spheres 278

8.5 Transient Non-Homogeneous Problems 283

8.6 2-D Problems: Product Solution Method 285

8.7 Semi-Infinite Slab Analysis 287

8.8 Penetration Theory of Mass Transfer 294

8.9 Transient Diffusion with Variable Diffusivity 295

8.10 Eigenvalue Computations with CHEBFUN 297

8.11 Computations with PDEPE Solver 299

Chapter 9: Basics of Convective Mass Transport 309

9.1 Definitions for External and Internal Flows 310

9.2 Relation to Differential Model 311

9.3 Key Dimensionless Groups 313

9.4 Mass Transfer in Flows in Pipes and Channels 315

9.5 Mass Transfer in Flow over a Flat Plate 316

9.6 Mass Transfer for Film Flow 318

9.7 Mass Transfer from a Solid Sphere 320

9.8 Mass Transfer from a Gas Bubble 321

9.9 Mass Transfer in Mechanically Agitated Tanks 325

9.10 Gas–Liquid Mass Transfer in a Packed Bed Absorber 327

Chapter 10: Convective Mass Transfer: Theory for Internal Laminar Flow 335

10.1 Mass Transfer in Laminar Flow in a Pipe 336

10.2 Wall Reaction: The Robin Problem 344

10.3 Entry Region Analysis 348

10.4 Channel Flows with Mass Transfer 350

10.5 Mass Transfer in Film Flow 353

10.6 Numerical Solution with PDEPE 358

Chapter 11: Mass Transfer in Laminar Boundary Layers 365

11.1 Flat Plate with Low Flux Mass Transfer 366

11.2 Integral Balance Approach 376

11.3 High Flux Analysis 383

11.4 Mass Transfer for Flow over Inclined and Curved Surfaces 388

11.5 Bubbles and Drops 396

Chapter 12: Convective Mass Transfer in Turbulent Flow 403

12.1 Properties of Turbulent Flow 404

12.2 Properties of Time Averaging 406

12.3 Time-Averaged Equation of Mass Transfer 408

12.4 Closure Models 411

12.5 Velocity and Turbulent Diffusivity Profiles 413

12.6 Turbulent Mass Transfer in Channels and Pipes 417

12.7 Van Driest Model for Large Sc 425

12.8 Turbulent Mass Transfer at Gas–Liquid Interface 427

Chapter 13: Macroscopic and Compartmental Models 435

13.1 Stirred Reactor: The Backmixing Assumption 436

13.2 Transient Balance: Tracer Studies 438

13.3 Moment Analysis of Tracer Data 444

13.4 Tanks in Series Models: Reactor Performance 449

13.5 Macrofluid Models 450

13.6 Variance-Based Models for Partial Micromixing 453

13.7 Compartmental Models 454

13.8 Compartmental Models for Environmental Transport 459

13.9 Fluid–Fluid Systems 462

13.10 Models for Multistage Cascades 465

Chapter 14: Mesoscopic Models and the Concept of Dispersion 475

14.1 Plug Flow Idealization 476

14.2 Dispersion Model 478

14.3 Dispersion Coeffcient: Tracer Response Method 484

14.4 Taylor Model for Dispersion in Laminar Flow 488

14.5 Segregated Flow Model 491

14.6 Dispersion Coe[1]cient Values for Some Common Cases 493

14.7 Two-Phase Flow: Models Based on Ideal Flow Patterns 495

14.8 Tracer Response in Two-Phase Systems 503

Chapter 15: Mass Transfer: Multicomponent Systems 517

15.1 Constitutive Model for Multicomponent Transport 518

15.2 Computations for a Reacting System 520

15.3 Heterogeneous Reactions 525

15.4 Non-Reacting Systems 528

15.5 Multicomponent Diffusivity Matrix 535

Chapter 16: Mass Transport in Electrolytic Systems 543

16.1 Transport of Charged Species: Preliminaries 544

16.2 Charge Neutrality 547

16.3 General Expression for the Electric Field 548

16.4 Electrolyte Transport across Uncharged Membrane 551

16.5 Transport across a Charged Membrane 553

16.6 Transfer Rate in Diffusion Film near an Electrode 556

Part II: Reacting Systems 565

Chapter 17: Laminar Flow Reactor 567

17.1 Model Equations and Key Dimensionless Groups 568

17.2 Two Limiting Cases 572

17.3 Mesoscopic Dispersion Model 575

17.4 Other Examples of Flow Reactors 577

Chapter 18: Mass Transfer with Reaction: Porous Catalysts 585

18.1 Catalyst Properties and Applications 586

18.2 Diffusion-Reaction Model 588

18.3 Multiple Species 605

18.4 Three-Phase Catalytic Reactions 607

18.5 Temperature Effects in a Porous Catalyst 610

18.6 Orthogonal Collocation Method 615

18.7 Finite Difference Methods 617

18.8 Linking with Reactor Models 622

Chapter 19: Reacting Solids 635

19.1 Shrinking Core Model 636

19.2 Volume Reaction Model 644

19.3 Other Models for Gas–Solid Reactions 651

19.4 Solid–Solid Reactions 654

Chapter 20: Gas–Liquid Reactions: Film Theory Models 661

20.1 First-Order Reaction of Dissolved Gas 662

20.2 Bulk Concentration and Bulk Reactions 668

20.3 Bimolecular Reactions 672

20.4 Simultaneous Absorption of Two Gases 684

20.5 Coupling with Reactor Models 688

20.6 Absorption in Slurries 692

20.7 Liquid–Liquid Reactions 697

Chapter 21: Gas–Liquid Reactions: Penetration Theory Approach 705

21.1 Concepts of Penetration Theory 706

21.2 Bimolecular Reaction 712

21.3 Instantaneous Reaction Case 714

21.4 Ideal Contactors 717

Chapter 22: Reactive Membranes and Facilitated Transport 727

22.1 Single Solute Diffusion 729

22.2 Co- and Counter-Transport 736

22.3 Equilibrium Model: A Computational Scheme 739

22.4 Reactive Membranes in Practice 742

Chapter 23: Biomedical Applications 749

23.1 Oxygen Uptake in Lungs 751

23.2 Transport in Tissues: Krogh Model 757

23.3 Compartmental Models for Pharmacokinetics 760

23.4 Model for a Hemodialyzer 763

Chapter 24 Electrochemical Reaction Engineering 775

24.1 Basic Definitions 776

24.2 Thermodynamic Considerations: Nernst Equation 781

24.3 Kinetic Model for Electrochemical Reactions 786

24.4 Mass Transfer Eects 791

24.5 Voltage Balance 793

24.6 Copper Electrowinning 795

24.7 Hydrogen Fuel Cell 798

24.8 Li-Ion Battery Modeling 800

Part III: Mass Transfer–Based Separations 809

Chapter 25: Humidification and Drying 811

25.1 Wet and Dry Bulb Temperature 812

25.2 Humidification: Cooling Towers 815

25.3 Model for Counterflow 817

25.4 Cross-Flow Cooling Towers 825

25.5 Drying 827

25.6 Constant Rate Period 830

25.7 Falling Rate Period 833

Chapter 26: Condensation 845

26.1 Condensation of Pure Vapor 846

26.2 Condensation of a Vapor with a Non-Condensible Gas 850

26.3 Fog Formation 855

26.4 Condensation of Binary Gas Mixture 857

26.5 Condenser Model 861

26.6 Ternary Systems 864

Chapter 27: Gas Transport in Membranes 871

27.1 Gas Separation Membranes 872

27.2 Gas Translation Model 879

27.3 Gas Permeator Models 881

27.4 Reactor Coupled with a Membrane Separator 890

Chapter 28: Liquid Separation Membranes 897

28.1 Classification Based on Pore Size 898

28.2 Transport in Semi-Permeable Membranes 900

28.3 Forward Osmosis 907

28.4 Pervaporation 908

Chapter 29: Adsorption and Chromatography 919

29.1 Applications and Adsorbent Properties 920

29.2 Isotherms 921

29.3 Model for Batch Slurry Adsorber 924

29.4 Fixed Bed Adsorption 931

29.5 Chromatography 938

Chapter 30: Electrodialysis and Electrophoresis 945

30.1 Technological Aspects 946

30.2 Preliminary Design of an Electrodialyzer 951

30.3 Principle of Electrophoresis 955

30.4 Electrophoretic Separation Devices 957

References 965

Index 979


Приватный текст
Зарегистрироваться
Написать 5 сообщений (5 осталось)


Transport Processes and Separation Process Principles, 5th Edition - Christie John Geankoplis, Allen H. Hersel, Daniel H. Lepek

» Click to show Spoiler - click again to hide... «
Table of Contents
Preface to the Fifth Edition xxvii

About the Authors xxxi

Part 1: Transport Processes: Momentum, Heat, and Mass

Chapter 1: Introduction to Engineering Principles and Units 3

1.0 Chapter Objectives 3

1.1 Classification of Transport Processes and Separation Processes (Unit Operations) 3

1.2 SI System of Basic Units Used in This Text and Other Systems 6

1.3 Methods of Expressing Temperatures and Compositions 8

1.4 Gas Laws and Vapor Pressure 10

1.5 Conservation of Mass and Material Balances 13

1.6 Energy and Heat Units 17

1.7 Conservation of Energy and Heat Balances 23

1.8 Numerical Methods for Integration 28

1.9 Chapter Summary 29

Chapter 2: Introduction to Fluids and Fluid Statics 36

2.0 Chapter Objectives 36

2.1 Introduction 36

2.2 Fluid Statics 37

2.3 Chapter Summary 47

Chapter 3: Fluid Properties and Fluid Flows 50

3.0 Chapter Objectives 50

3.1 Viscosity of Fluids 50

3.2 Types of Fluid Flow and Reynolds Number 54

3.3 Chapter Summary 58

Chapter 4: Overall Mass, Energy, and Momentum Balances 61

4.0 Chapter Objectives 61

4.1 Overall Mass Balance and Continuity Equation 62

4.2 Overall Energy Balance 68

4.3 Overall Momentum Balance 81

4.4 Shell Momentum Balance and Velocity Profile in Laminar Flow 90

4.5 Chapter Summary 96

Chapter 5: Incompressible and Compressible Flows in Pipes 105

5.0 Chapter Objectives 105

5.1 Design Equations for Laminar and Turbulent Flow in Pipes 106

5.2 Compressible Flow of Gases 125

5.3 Measuring the Flow of Fluids 129

5.4 Chapter Summary 138

Chapter 6: Flows in Packed and Fluidized Beds 145

6.0 Chapter Objectives 145

6.1 Flow Past Immersed Objects 146

6.2 Flow in Packed Beds 150

6.3 Flow in Fluidized Beds 156

6.4 Chapter Summary 161

Chapter 7: Pumps, Compressors, and Agitation Equipment 166

7.0 Chapter Objectives 166

7.1 Pumps and Gas-Moving Equipment 166

7.2 Agitation, Mixing of Fluids, and Power Requirements 176

7.3 Chapter Summary 192

Chapter 8: Differential Equations of Fluid Flow 196

8.0 Chapter Objectives 196

8.1 Differential Equations of Continuity 196

8.2 Differential Equations of Momentum Transfer or Motion 202

8.3 Use of Differential Equations of Continuity and Motion 207

8.4 Chapter Summary 216

Chapter 9: Non-Newtonian Fluids 220

9.0 Chapter Objectives 220

9.1 Non-Newtonian Fluids 221

9.2 Friction Losses for Non-Newtonian Fluids 226

9.3 Velocity Profiles for Non-Newtonian Fluids 229

9.4 Determination of Flow Properties of Non-Newtonian Fluids Using a Rotational Viscometer 232

9.5 Power Requirements in Agitation and Mixing of Non-Newtonian Fluids 234

9.6 Chapter Summary 235

Chapter 10: Potential Flow and Creeping Flow 239

10.0 Chapter Objectives 239

10.1 Other Methods for Solution of Differential Equations of Motion 239

10.2 Stream Function 240

10.3 Differential Equations of Motion for Ideal Fluids (Inviscid Flow) 241

10.4 Potential Flow and Velocity Potential 241

10.5 Differential Equations of Motion for Creeping Flow 246

10.6 Chapter Summary 247

Chapter 11: Boundary-Layer and Turbulent Flow 250

11.0 Chapter Objectives 250

11.1 Boundary-Layer Flow 251

11.2 Turbulent Flow 254

11.3 Turbulent Boundary-Layer Analysis 260

11.4 Chapter Summary 263

Chapter 12: Introduction to Heat Transfer 265

12.0 Chapter Objectives 265

12.1 Energy and Heat Units 265

12.2 Conservation of Energy and Heat Balances 271

12.3 Conduction and Thermal Conductivity 277

12.4 Convection 282

12.5 Radiation 284

12.6 Heat Transfer with Multiple Mechanisms/Materials 287

12.7 Chapter Summary 292

Chapter 13: Steady-State Conduction 299

13.0 Chapter Objectives 299

13.1 Conduction Heat Transfer 299

13.2 Conduction Through Solids in Series or Parallel with Convection 305

13.3 Conduction with Internal Heat Generation 313

13.4 Steady-State Conduction in Two Dimensions Using Shape Factors 315

13.5 Numerical Methods for Steady-State Conduction in Two Dimensions 318

13.6 Chapter Summary 326

Chapter 14: Principles of Unsteady-State Heat Transfer 332

14.0 Chapter Objectives 332

14.1 Derivation of the Basic Equation 332

14.2 Simplified Case for Systems with Negligible Internal Resistance 334

14.3 Unsteady-State Heat Conduction in Various Geometries 337

14.4 Numerical Finite-Difference Methods for Unsteady-State Conduction 355

14.5 Chilling and Freezing of Food and Biological Materials 366

14.6 Differential Equation of Energy Change 372

14.7 Chapter Summary 376

Chapter 15: Introduction to Convection 385

15.0 Chapter Objectives 385

15.1 Introduction and Dimensional Analysis in Heat Transfer 385

15.2 Boundary-Layer Flow and Turbulence in Heat Transfer 389

15.3 Forced Convection Heat Transfer Inside Pipes 394

15.4 Heat Transfer Outside Various Geometries in Forced Convection 402

15.5 Natural Convection Heat Transfer 408

15.6 Boiling and Condensation 415

15.7 Heat Transfer of Non-Newtonian Fluids 424

15.8 Special Heat-Transfer Coefficients 427

15.9 Chapter Summary 436

Chapter 16: Heat Exchangers 444

16.0 Chapter Objectives 444

16.1 Types of Exchangers 444

16.2 Log-Mean-Temperature-Difference Correction Factors 447

16.3 Heat-Exchanger Effectiveness 450

16.4 Fouling Factors and Typical Overall U Values 453

16.5 Double-Pipe Heat Exchanger 454

16.6 Chapter Summary 458

Chapter 17: Introduction to Radiation Heat Transfer 461

17.0 Chapter Objectives 461

17.1 Introduction to Radiation Heat-Transfer Concepts 461

17.2 Basic and Advanced Radiation Heat-Transfer Principles 465

17.3 Chapter Summary 482

Chapter 18: Introduction to Mass Transfer 487

18.0 Chapter Objectives 487

18.1 Introduction to Mass Transfer and Diffusion 487

18.2 Diffusion Coefficient 493

18.3 Convective Mass Transfer 508

18.4 Molecular Diffusion Plus Convection and Chemical Reaction 508

18.5 Chapter Summary 512

Chapter 19: Steady-State Mass Transfer 519

19.0 Chapter Objectives 519

19.1 Molecular Diffusion in Gases 519

19.2 Molecular Diffusion in Liquids 528

19.3 Molecular Diffusion in Solids 531

19.4 Diffusion of Gases in Porous Solids and Capillaries 537

19.5 Diffusion in Biological Gels 544

19.6 Special Cases of the General Diffusion Equation at Steady State 546

19.7 Numerical Methods for Steady-State Molecular Diffusion in Two Dimensions 550

19.8 Chapter Summary 557

Chapter 20: Unsteady-State Mass Transfer 568

20.0 Chapter Objectives 568

20.1 Unsteady-State Diffusion 568

20.2 Unsteady-State Diffusion and Reaction in a Semi-Infinite Medium 575

20.3 Numerical Methods for Unsteady-State Molecular Diffusion 577

20.4 Chapter Summary 582

Chapter 21: Convective Mass Transfer 586

21.0 Chapter Objectives 586

21.1 Convective Mass Transfer 586

21.2 Dimensional Analysis in Mass Transfer 594

21.3 Mass-Transfer Coefficients for Various Geometries 595

21.4 Mass Transfer to Suspensions of Small Particles 610

21.5 Models for Mass-Transfer Coefficients 613

21.6 Chapter Summary 617

Part 2: Separation Process Principles

Chapter 22: Absorption and Stripping 627

22.0 Chapter Objectives 627

22.1 Equilibrium and Mass Transfer Between Phases 627

22.2 Introduction to Absorption 645

22.3 Pressure Drop and Flooding in Packed Towers 649

22.4 Design of Plate Absorption Towers 654

22.5 Design of Packed Towers for Absorption 656

22.6 Efficiency of Random-Packed and Structured Packed Towers 672

22.7 Absorption of Concentrated Mixtures in Packed Towers 675

22.8 Estimation of Mass-Transfer Coefficients for Packed Towers 679

22.9 Heat Effects and Temperature Variations in Absorption 682

22.10 Chapter Summary 685

Chapter 23: Humidification Processes 694

23.0 Chapter Objectives 694

23.1 Vapor Pressure of Water and Humidity 694

23.2 Introduction and Types of Equipment for Humidification 703

23.3 Theory and Calculations for Cooling-Water Towers 704

23.4 Chapter Summary 712

Chapter 24: Filtration and Membrane Separation Processes (Liquid–Liquid or Solid–Liquid Phase) 716

24.0 Chapter Objectives 716

24.1 Introduction to Dead-End Filtration 716

24.2 Basic Theory of Filtration 722

24.3 Membrane Separations 732

24.4 Microfiltration Membrane Processes 733

24.5 Ultrafiltration Membrane Processes 734

24.6 Reverse-Osmosis Membrane Processes 738

24.7 Dialysis 747

24.8 Chapter Summary 751

Chapter 25: Gaseous Membrane Systems 759

25.0 Chapter Objectives 759

25.1 Gas Permeation 759

25.2 Complete-Mixing Model for Gas Separation by Membranes 765

25.3 Complete-Mixing Model for Multicomponent Mixtures 770

25.4 Cross-Flow Model for Gas Separation by Membranes 773

25.5 Derivation of Equations for Countercurrent and Cocurrent Flow for Gas Separation by Membranes 779

25.6 Derivation of Finite-Difference Numerical Method for Asymmetric Membranes 787

25.7 Chapter Summary 798

Chapter 26: Distillation 805

26.0 Chapter Objectives 805

26.1 Equilibrium Relations Between Phases 805

26.2 Single and Multiple Equilibrium Contact Stages 808

26.3 Simple Distillation Methods 813

26.4 Binary Distillation with Reflux Using the McCabe–Thiele and Lewis Methods 818

26.5 Tray Efficiencies 836

26.6 Flooding Velocity and Diameter of Tray Towers Plus Simple Calculations for Reboiler and Condenser Duties 839

26.7 Fractional Distillation Using the Enthalpy–Concentration Method 841

26.8 Distillation of Multicomponent Mixtures 851

26.9 Chapter Summary 862

Chapter 27: Liquid–Liquid Extraction 874

27.0 Chapter Objectives 874

27.1 Introduction to Liquid–Liquid Extraction 874

27.2 Single-Stage Equilibrium Extraction 878

27.3 Types of Equipment and Design for Liquid–Liquid Extraction 880

27.4 Continuous Multistage Countercurrent Extraction 889

27.5 Chapter Summary 901

Chapter 28: Adsorption and Ion Exchange 907

28.0 Chapter Objectives 907

28.1 Introduction to Adsorption Processes 907

28.2 Batch Adsorption 910

28.3 Design of Fixed-Bed Adsorption Columns 912

28.4 Ion-Exchange Processes 918

28.5 Chapter Summary 924

Chapter 29: Crystallization and Particle Size Reduction 928

29.0 Chapter Objectives 928

29.1 Introduction to Crystallization 928

29.2 Crystallization Theory 935

29.3 Mechanical Size Reduction 942

29.4 Chapter Summary 947

Chapter 30: Settling, Sedimentation, and Centrifugation 952

30.0 Chapter Objectives 952

30.1 Settling and Sedimentation in Particle–Fluid Separation 953

30.2 Centrifugal Separation Processes 966

30.3 Chapter Summary 979

Chapter 31: Leaching 984

31.0 Chapter Objectives 984

31.1 Introduction and Equipment for Liquid–Solid Leaching 984

31.2 Equilibrium Relations and Single-Stage Leaching 990

31.3 Countercurrent Multistage Leaching 994

31.4 Chapter Summary 999

Chapter 32: Evaporation 1002

32.0 Chapter Objectives 1002

32.1 Introduction 1002

32.2 Types of Evaporation Equipment and Operation Methods 1004

32.3 Overall Heat-Transfer Coefficients in Evaporators 1008

32.4 Calculation Methods for Single-Effect Evaporators 1010

32.5 Calculation Methods for Multiple-Effect Evaporators 1016

32.6 Condensers for Evaporators 1026

32.7 Evaporation of Biological Materials 1028

32.8 Evaporation Using Vapor Recompression 1029

32.9 Chapter Summary 1030

Chapter 33: Drying 1035

33.0 Chapter Objectives 1035

33.1 Introduction and Methods of Drying 1035

33.2 Equipment for Drying 1036

33.3 Vapor Pressure of Water and Humidity 1040

33.4 Equilibrium Moisture Content of Materials 1049

33.5 Rate-of-Drying Curves 1052

33.6 Calculation Methods for a Constant-Rate Drying Period 1057

33.7 Calculation Methods for the Falling-Rate Drying Period 1062

33.8 Combined Convection, Radiation, and Conduction Heat Transfer in the Constant-Rate Period 1065

33.9 Drying in the Falling-Rate Period by Diffusion and Capillary Flow 1068

33.10 Equations for Various Types of Dryers 1074

33.11 Freeze-Drying of Biological Materials 1084

33.12 Unsteady-State Thermal Processing and Sterilization of Biological Materials 1088

33.13 Chapter Summary 1096

Part 3: Appendixes

Appendix A.1 Fundamental Constants and Conversion Factors 1107

Appendix A.2 Physical Properties of Water 1113

Appendix A.3 Physical Properties of Inorganic and Organic Compounds 1124

Appendix A.4 Physical Properties of Foods and Biological Materials 1147

Appendix A.5 Properties of Pipes, Tubes, and Screens 1151

Appendix A.6 Lennard-Jones Potentials as Determined from Viscosity Data 1154

Notation 1156

Index 1166


Приватный текст
Зарегистрироваться
Написать 5 сообщений (5 осталось)


Chemical Process Equipment Design - Richard Turton, Joseph A. Shaeiwitz

» Click to show Spoiler - click again to hide... «
Table of Contents
Preface xi

Acknowledgments xiii

About the Authors xv

Chapter 1: Process Fluid Mechanics 1

1.0 Introduction 1

1.1 Basic Relationships in Fluid Mechanics 1

1.2 Fluid Flow Equipment 7

1.3 Frictional Pipe Flow 13

1.4 Other Flow Situations 28

1.5 Performance of Fluid Flow Equipment 41

Chapter 2: Process Heat Transfer 77

2.0 Introduction 77

2.1 Basic Heat-Exchanger Relationships 77

2.2 Heat-Exchange Equipment Design and Characteristics 84

2.3 LMTD Correction Factor for Multiple Shell and Tube Passes 95

2.4 Overall Heat Transfer Coefficients–Resistances in Series 104

2.5 Estimation of Individual Heat Transfer Coefficients and Fouling Resistances 106

2.6 Extended Surfaces 135

2.7 Algorithm and Worked Examples for the Design of Heat Exchangers 144

2.8 Performance Problems 154

Chapter 3: Separation Equipment 185

3.0 Introduction 185

3.1 Basic Relationships in Separations 186

3.2 Illustrative Diagrams 193

3.3 Equipment 221

3.4 Extraction Equipment 251

3.5 Gas Permeation Membrane Separations 253

Chapter 4: Reactors 275

4.0 Introduction 275

4.1 Basic Relationships 276

4.2 Equipment Design for Nonisothermal Conditions 294

4.3 Performance Problems 317

Chapter 5: Other Equipment 331

5.0 Introduction 331

5.1 Pressure Vessels 332

5.2 Knockout Drums or Simple Phase Separators 340

5.3 Steam Ejectors 365

Index 383

Приватный текст
Зарегистрироваться
Написать 5 сообщений (5 осталось)


Fundamental Concepts and Computations in Chemical Engineering
Vivek Utgika

Table of Contents
Preface xiii

Acknowledgments xvii

About the Author xix

Chapter 1: The Chemical Engineering Profession 1

1.1 Engineering and Engineers 2

1.2 Engineering Disciplines 8

1.3 Defining Chemical Engineering 12

1.4 Roles and Responsibilities of a Chemical Engineer 14

1.5 Employment of Chemical Engineers 19

1.6 Summary 22

Chapter 2: Chemical and Allied Industries 27

2.1 Classification of Industries 27

2.2 The Chemical Industry 29

2.3 Related Industries 34

2.4 Top 50 Chemical Companies 36

2.5 Important Chemical Products 40

2.6 Characteristics of Chemical Industries 50

2.7 Summary 53

Chapter 3: Making of a Chemical Engineer 57

3.1 A Chemical Process Plant: Synthesis of Ammonia 57

3.2 Responsibilities and Functions of a Chemical Engineer 61

3.3 Chemical Engineering Curriculum 63

3.4 Summary 87

Chapter 4: Introduction to Computations in Chemical Engineering 91

4.1 Nature of Chemical Engineering Computational Problems 91

4.2 Solution Algorithms 102

4.3 Computational Tools—Machines and Software 107

4.4 Summary 113

Chapter 5: Computations in Fluid Flow 117

5.1 Qualitative Description of Flow in Conduits 117

5.2 Quantitative Analysis of Fluid Flow 119

5.3 Basic Computational Problems 124

5.4 Summary 140

Chapter 6: Material Balance Computations 143

6.1 Quantitative Principles of Material Balance 143

6.2 Material Balances in Nonreacting Systems 146

6.3 Material Balances in Reacting Systems 151

6.4 Material Balances over Multiple Process Units 159

6.5 Summary 163

Chapter 7: Energy Balance Computations 167

7.1 Quantitative Principles of Energy Balance 167

7.2 Basic Energy Balance Problems 175

7.3 Summary 186

Chapter 8: Computations in Chemical Engineering Thermodynamics 191

8.1 Fundamental Concepts of Thermodynamics 192

8.2 Basic Computational Problems 204

8.3 Summary 211

Chapter 9: Computations in Chemical Engineering Kinetics 217

9.1 Fundamental Concepts of Chemical Engineering Kinetics 218

9.2 Basic Computational Problems 229

9.3 Summary 240

Epilogue 245

Appendix A: Introduction to Mathematical Software Packages 247



Appendix B: Computations Using Process Simulation Software 259

Index 273


Приватный текст
Зарегистрироваться
Написать 5 сообщений (5 осталось)


Elements of Chemical Reaction Engineering, 5th Edition - H. Scott Fogler

» Click to show Spoiler - click again to hide... «
Table of Contents

Preface xvii

About the Author xxxiii

Chapter 1: Mole Balances 1

1.1 The Rate of Reaction, –rA 4

1.2 The General Mole Balance Equation 8

1.3 Batch Reactors (BRs) 10

1.4 Continuous-Flow Reactors 12

1.5 Industrial Reactors 22

Chapter 2: Conversion and Reactor Sizing 31

2.1 Definition of Conversion 32

2.2 Batch Reactor Design Equations 32

2.3 Design Equations for Flow Reactors 35

2.4 Sizing Continuous-Flow Reactors 38

2.5 Reactors in Series 47

2.6 Some Further Definitions 58

Chapter 3: Rate Laws 69

3.1 Basic Definitions 70

3.2 The Reaction Order and the Rate Law 72

3.3 Rates and the Reaction Rate Constant 83

3.4 Present Status of Our Approach to Reactor Sizing and Design 93

Chapter 4: Stoichiometry 105

4.1 Batch Systems 107

4.2 Flow Systems 113

4.3 Reversible Reactions and Equilibrium Conversion 126

Chapter 5: Isothermal Reactor Design: Conversion 139

5.1 Design Structure for Isothermal Reactors 140

5.2 Batch Reactors (BRs) 144

5.3 Continuous-Stirred Tank Reactors (CSTRs) 152

5.4 Tubular Reactors 162

5.5 Pressure Drop in Reactors 169

5.6 Synthesizing the Design of a Chemical Plant 190

Chapter 6: Isothermal Reactor Design: Moles and Molar Flow Rates 207

6.1 The Molar Flow Rate Balance Algorithm 208

6.2 Mole Balances on CSTRs, PFRs, PBRs, and Batch Reactors 208

6.3 Application of the PFR Molar Flow Rate Algorithm to a Microreactor 212

6.4 Membrane Reactors 217

6.5 Unsteady-State Operation of Stirred Reactors 225

6.6 Semibatch Reactors 227

Chapter 7: Collection and Analysis of Rate Data 243

7.1 The Algorithm for Data Analysis 244

7.2 Determining the Reaction Order for Each of Two Reactants Using the Method of Excess 246

7.3 Integral Method 247

7.4 Differential Method of Analysis 251

7.5 Nonlinear Regression 258

7.6 Reaction-Rate Data from Differential Reactors 264

7.7 Experimental Planning 271

Chapter 8: Multiple Reactions 279

8.1 Definitions 280

8.2 Algorithm for Multiple Reactions 282

8.3 Parallel Reactions 285

8.4 Reactions in Series 294

8.5 Complex Reactions 304

8.6 Membrane Reactors to Improve Selectivity in Multiple Reactions 312

8.7 Sorting It All Out 317

8.8 The Fun Part 317

Chapter 9: Reaction Mechanisms, Pathways, Bioreactions, and Bioreactors 333

9.1 Active Intermediates and Nonelementary Rate Laws 334

9.2 Enzymatic Reaction Fundamentals 343

9.3 Inhibition of Enzyme Reactions 356

9.4 Bioreactors and Biosynthesis 364

Chapter 10: Catalysis and Catalytic Reactors 399

10.1 Catalysts 399

10.2 Steps in a Catalytic Reaction 405

10.3 Synthesizing a Rate Law, Mechanism, and Rate-Limiting Step 421

10.4 Heterogeneous Data Analysis for Reactor Design 436

10.5 Reaction Engineering in Microelectronic Fabrication 446

10.6 Model Discrimination 451

10.7 Catalyst Deactivation 454

Chapter 11: Nonisothermal Reactor Design—The Steady-State Energy Balance and Adiabatic PFR Applications 493

11.1 Rationale 494

11.2 The Energy Balance 495

11.3 The User-Friendly Energy Balance Equations 502

11.4 Adiabatic Operation 508

11.5 Adiabatic Equilibrium Conversion 518

11.6 Reactor Staging 522

11.7 Optimum Feed Temperature 526

Chapter 12: Steady-State Nonisothermal Reactor Design—Flow Reactors with Heat Exchange 539

12.1 Steady-State Tubular Reactor with Heat Exchange 540

12.2 Balance on the Heat-Transfer Fluid 543

12.3 Algorithm for PFR/PBR Design with Heat Effects 545

12.4 CSTR with Heat Effects 564

12.5 Multiple Steady States (MSS) 574

12.6 Nonisothermal Multiple Chemical Reactions 581

12.7 Radial and Axial Variations in a Tubular Reactor 595

12.8 Safety 603

Chapter 13: Unsteady-State Nonisothermal Reactor Design 629

13.1 Unsteady-State Energy Balance 630

13.2 Energy Balance on Batch Reactors 632

13.3 Semibatch Reactors with a Heat Exchanger 646

13.4 Unsteady Operation of a CSTR 651

13.5 Nonisothermal Multiple Reactions 656

Chapter 14: Mass Transfer Limitations in Reacting Systems 679

14.1 Diffusion Fundamentals 680

14.2 Binary Diffusion 684

14.3 Diffusion Through a Stagnant Film 688

14.4 The Mass Transfer Coefficient 690

14.5 What If . . . ? (Parameter Sensitivity) 705

Chapter 15: Diffusion and Reaction 719

15.1 Diffusion and Reactions in Homogeneous Systems 720

15.2 Diffusion and Reactions in Spherical Catalyst Pellets 720

15.3 The Internal Effectiveness Factor 730

15.4 Falsified Kinetics 737

15.5 Overall Effectiveness Factor 739

15.6 Estimation of Diffusion- and Reaction-Limited Regimes 743

15.7 Mass Transfer and Reaction in a Packed Bed 744

15.8 Determination of Limiting Situations from Reaction-Rate Data 750

15.9 Multiphase Reactors in the Professional Reference Shelf 751

15.10 Fluidized Bed Reactors 753

15.11 Chemical Vapor Deposition (CVD) 753

Chapter 16: Residence Time Distributions of Chemical Reactors 767

16.1 General Considerations 767

16.2 Measurement of the RTD 770

16.3 Characteristics of the RTD 777

16.4 RTD in Ideal Reactors 784

16.5 PFR/CSTR Series RTD 789

16.6 Diagnostics and Troubleshooting 793

Chapter 17: Predicting Conversion Directly from the Residence Time Distribution 807

17.1 Modeling Nonideal Reactors Using the RTD 808

17.2 Zero-Adjustable-Parameter Models 810

17.3 Using Software Packages 827

17.4 RTD and Multiple Reactions 830

Chapter 18: Models for Nonideal Reactors 845

18.1 Some Guidelines for Developing Models 846

18.2 The Tanks-in-Series (T-I-S) One-Parameter Model 848

18.3 Dispersion One-Parameter Model 852

18.4 Flow, Reaction, and Dispersion 854

18.5 Tanks-in-Series Model versus Dispersion Model 869

18.6 Numerical Solutions to Flows with Dispersion and Reaction 870

18.7 Two-Parameter Models—Modeling Real Reactors with Combinations of Ideal Reactors 871

18.8 Use of Software Packages to Determine the Model Parameters 880

18.9 Other Models of Nonideal Reactors Using CSTRs and PFRs 882

18.10 Applications to Pharmacokinetic Modeling 883

Appendix A: Numerical Techniques 897

A.1 Useful Integrals in Reactor Design 897

A.2 Equal-Area Graphical Differentiation 898

A.3 Solutions to Differential Equations 900

A.4 Numerical Evaluation of Integrals 901

A.5 Semilog Graphs 903

A.6 Software Packages 903

Appendix B: Ideal Gas Constant and Conversion Factors 905

Appendix C: Thermodynamic Relationships Involving the Equilibrium Constant 909

Appendix D: Software Packages 915

D.1 Polymath 915

D.2 MATLAB 916

D.3 Aspen 916

D.4 COMSOL Multiphysics 917

Appendix E: Rate Law Data 919

Appendix F: Nomenclature 921

Appendix G: Open-Ended Problems 925

G.1 Design of Reaction Engineering Experiment 925

G.2 Effective Lubricant Design 925

G.3 Peach Bottom Nuclear Reactor 925

G.4 Underground Wet Oxidation 926

G.5 Hydrodesulfurization Reactor Design 926

G.6 Continuous Bioprocessing 926

G.7 Methanol Synthesis 926

G.8 Cajun Seafood Gumbo 926

G.9 Alcohol Metabolism 927

G.10 Methanol Poisoning 928

Appendix H: Use of Computational Chemistry Software Packages 929

Appendix I: How to Use the CRE Web Resources 931

I.1 CRE Web Resources Components 931

I.2 How the Web Can Help Your Learning Style 933

I.3 Navigation 934

Index 937


Приватный текст
Зарегистрироваться
Написать 5 сообщений (5 осталось)
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
lavteam522
сообщение 15.07.2018 - 01:21
Сообщение #7


Завсегдатай
Иконка группы

Группа: Пользователи
Пользователь №: 162214
Сообщений: 304
Регистрация: 28.07.2013
Загружено: байт
Скачано: байт
Коэффициент: ---
Спасибо сказали: 338 раз(а)



Fluid Mechanics for Chemical Engineers: with Microfluidics, CFD, and COMSOL Multiphysics 5, 3rd Edition
James O. Wilkes, University of Michigan

» Click to show Spoiler - click again to hide... «
Table of Contents
Preface xv

Part I: Macroscopic Fluid Mechanics 1

Chapter 1: Introduction to Fluid Mechanics 3

1.1 Fluid Mechanics in Chemical Engineering 3

1.2 General Concepts of a Fluid 3

1.3 Stresses, Pressure, Velocity, and the Basic Laws 5

1.4 Physical Properties—Density, Viscosity, and Surface Tension 10

1.5 Units and Systems of Units 21

1.6 Hydrostatics 26

1.7 Pressure Change Caused by Rotation 39

Problems for Chapter 1 42

Chapter 2: Mass, Energy, and Momentum Balances 55

2.1 General Conservation Laws 55

2.2 Mass Balances 57

2.3 Energy Balances 61

2.4 Bernoulli’s Equation 67

2.5 Applications of Bernoulli’s Equation 70

2.6 Momentum Balances 78

2.7 Pressure, Velocity, and Flow Rate Measurement 92

Problems for Chapter 2 96

Chapter 3: Fluid Friction in Pipes 120

3.1 Introduction 120

3.2 Laminar Flow 123

3.3 Models for Shear Stress 129

3.4 Piping and Pumping Problems 133

3.5 Flow in Noncircular Ducts 150

3.6 Compressible Gas Flow in Pipelines 156

3.7 Compressible Flow in Nozzles 159

3.8 Complex Piping Systems 163

Problems for Chapter 3 168

Chapter 4: Flow in Chemical Engineering Equipment 185

4.1 Introduction 185

4.2 Pumps and Compressors 188

4.3 Drag Force on Solid Particles in Fluids 194

4.4 Flow Through Packed Beds 204

4.5 Filtration 210

4.6 Fluidization 215

4.7 Dynamics of a Bubble-Cap Distillation Column 216

4.8 Cyclone Separators 219

4.9 Sedimentation 222

4.10 Dimensional Analysis 224

Problems for Chapter 4 230

Part II: Microscopic Fluid Mechanics 247

Chapter 5: Differential Equations of Fluid Mechanics 249

5.1 Introduction to Vector Analysis 249

5.2 Vector Operations 250

5.3 Other Coordinate Systems 263

5.4 The Convective Derivative 266

5.5 Differential Mass Balance 267

5.6 Differential Momentum Balances 271

5.7 Newtonian Stress Components in Cartesian Coordinates 274

Problems for Chapter 5 285

Chapter 6: Solution Of Viscous-Flow Problems 292

6.1 Introduction 292

6.2 Solution of the Equations of Motion in Rectangular Coordinates 294

6.3 Alternative Solution Using a Shell Balance 301

6.4 Poiseuille and Couette Flows in Polymer Processing 313

6.5 Solution of the Equations of Motion in Cylindrical Coordinates 325

6.6 Solution of the Equations of Motion in Spherical Coordinates 330

Problems for Chapter 6 336

Chapter 7: Laplace’s Equation, Irrotational and Porous-Media Flows 357

7.1 Introduction 357

7.2 Rotational and Irrotational Flows 359

7.3 Steady Two-Dimensional Irrotational Flow 364

7.4 Physical Interpretation of the Stream Function 367

7.5 Examples of Planar Irrotational Flow 369

7.6 Axially Symmetric Irrotational Flow 382

7.7 Uniform Streams and Point Sources 384

7.8 Doublets and Flow Past a Sphere 388

7.9 Single-Phase Flow in a Porous Medium 391

7.10 Two-Phase Flow in Porous Media 394

7.11 Wave Motion in Deep Water 400

Problems for Chapter 7 404

Chapter 8: Boundary-Layer and Other Nearly Unidirectional Flows 418

8.1 Introduction 418

8.2 Simplified Treatment of Laminar Flow Past a Flat Plate 419

8.3 Simplification of the Equations of Motion 426

8.4 Blasius Solution for Boundary-Layer Flow 429

8.5 Turbulent Boundary Layers 432

8.6 Dimensional Analysis of the Boundary-Layer Problem 434

8.7 Boundary-Layer Separation 437

8.8 The Lubrication Approximation 448

8.9 Polymer Processing by Calendering 457

8.10 Thin Films and Surface Tension 463

Problems for Chapter 8 466

Chapter 9: Turbulent Flow 480

9.1 Introduction 480

9.2 Physical Interpretation of the Reynolds Stresses 487

9.3 Mixing-Length Theory 488

9.4 Determination of Eddy Kinematic Viscosity and Mixing Length 491

9.5 Velocity Profiles Based on Mixing-Length Theory 493

9.6 The Universal Velocity Profile for Smooth Pipes 495

9.7 Friction Factor in Terms of Reynolds Number for Smooth Pipes 497

9.8 Thickness of the Laminar Sublayer 499

9.9 Velocity Profiles and Friction Factor for Rough Pipe 501

9.10 Blasius-Type Law and the Power-Law Velocity Profile 502

9.11 A Correlation for the Reynolds Stresses 503

9.12 Computation of Turbulence by the k–ε Method 506

9.13 Analogies Between Momentum and Heat Transfer 520

9.14 Turbulent Jets 524

Problems for Chapter 9 532

Chapter 10: Bubble Motion, Two-Phase Flow, and Fluidization 542

10.1 Introduction 542

10.2 Rise of Bubbles in Unconfined Liquids 542

10.3 Pressure Drop and Void Fraction in Horizontal Pipes 547

10.4 Two-Phase Flow in Vertical Pipes 554

10.5 Flooding 566

10.6 Introduction to Fluidization 570

10.7 Bubble Mechanics 572

10.8 Bubbles in Aggregatively Fluidized Beds 577

Problems for Chapter 10 586

Chapter 11: Non-Newtonian Fluids 602

11.1 Introduction 602

11.2 Classification of Non-Newtonian Fluids 603

11.3 Constitutive Equations for Inelastic Viscous Fluids 606

11.4 Constitutive Equations for Viscoelastic Fluids 626

11.5 Response to Oscillatory Shear 633

11.6 Characterization of the Rheological Properties of Fluids 636

Problems for Chapter 11 644

Chapter 12: Microfluidics and Electrokinetic Flow Effects 653

12.1 Introduction 653

12.2 Physics of Microscale Fluid Mechanics 654

12.3 Pressure-Driven Flow Through Microscale Tubes 655

12.4 Mixing, Transport, and Dispersion 656

12.5 Species, Energy, and Charge Transport 658

12.6 The Electrical Double Layer and Electrokinetic Phenomena 661

12.7 Measuring the Zeta Potential 676

12.8 Electroviscosity 678

12.9 Particle and Macromolecule Motion in Microfluidic Channels 678

Problems for Chapter 12 683

Chapter 13: An Introduction to Computational Fluid Dynamics and ANSYS Fluent 688

13.1 Introduction and Motivation 688

13.2 Numerical Methods 690

13.3 Learning CFD by Using ANSYS Fluent 699

13.4 Practical CFD Examples 703

References for Chapter 13 719

Chapter 14: COMSOL Multiphysics for Solving Fluid Mechanics Problems 720

14.1 COMSOL Multiphysics—An Overview 720

14.2 The Steps for Solving Problems in COMSOL 723

14.3 How to Run COMSOL 725

14.4 Variables, Constants, Expressions, and Units 741

14.5 Boundary Conditions 742

14.6 Variables Used by COMSOL 743

14.7 Wall Functions in Turbulent-Flow Problems 744

14.8 Streamline Plotting in COMSOL 747

14.9 Special COMSOL Features Used in the Examples 749

14.10 Drawing Tools 754

14.11 Fluid Mechanics Problems Solvable by COMSOL 756

14.12 Conclusion—Problems and Learning Tools 761

Appendix A: Useful Mathematical Relationships 762

Appendix B: Answers to the True/False Assertions 768

Appendix C: Some Vector and Tensor Operations 771

General Index 773

Comsol Multiphysics Index 782

The Authors 784


Приватный текст
Зарегистрироваться
Написать 5 сообщений (5 осталось)
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Williams
сообщение 10.07.2019 - 08:51
Сообщение #8


Торговец чёрным деревом
Иконка группы

Группа: Админы
Пользователь №: 3953
Сообщений: 21778
Регистрация: 1.08.2003
Из: Москва
Загружено: байт
Скачано: байт
Коэффициент: ---
Спасибо сказали: 55382 раз(а)



Kalyan Annamalai, Ishwar K. Puri, and Milind Jog - Advanced Thermodynamics Engineering, 2nd Edition

CRC Press, 2011
pdf, 1142 pages, english
ISBN 9781439805725




Advanced Thermodynamics Engineering, Second Edition is designed for readers who need to understand and apply the engineering physics of thermodynamic concepts. It employs a self-teaching format that reinforces presentation of critical concepts, mathematical relationships, and equations with concrete physical examples and explanations of applications-to help readers apply principles to their own real-world problems. Less Mathematical/Theoretical Derivations - More Focus on Practical Application. Because both students and professionals must grasp theory almost immediately in this ever-changing electronic era, this book-now completely in decimal outline format-uses a phenomenological approach to problems, making advanced concepts easier to understand. After a decade teaching advanced thermodynamics, the authors infuse their own style and tailor content based on their observations as professional engineers, as well as feedback from their students. Condensing more esoteric material to focus on practical uses for this continuously evolving area of science, this book is filled with revised problems and extensive tables on thermodynamic properties and other useful information. The authors include an abundance of examples, figures, and illustrations to clarify presented ideas, and additional material and software tools are available for download. The result is a powerful, practical instructional tool that gives readers a strong conceptual foundation on which to build a solid, functional understanding of thermodynamics engineering.

https://turbobit.net/vbaln9bthfxd.html
Перейти в начало страницы
Вставить ник
+Цитировать сообщение

Ответить в данную темуНачать новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



RSS Текстовая версия Сейчас: 28.03.2024 - 14:55